A Neural Autoregressive Framework for Collaborative Filtering

نویسندگان

  • Zhen Ouyang
  • Chen Sun
  • Chunping Li
چکیده

Restricted Boltzmann Machine (RBM) is a two layer undirected graph model that capable to represent complex distributions. Recent research has shown RBM-based approach has comparable performance with, even performs better than previous models on many collaborative filtering (CF) tasks. However, the intractable inference makes the training of RBM sophisticated, which prevents it from practical application. The Neural Autoregressive Distribution Estimator (NADE) is inspired by RBM, but it provides tractable distribution using an autoregressive approach. We describe a novel neural framework for collaborative filtering called NACF, which is extended from NADE, providing comparable performance with previous models but an easier training procedure than RBM. We apply the autoregressive approach of NADE to CF tasks by extending it in many ways. First, we model the user-item ratings with different visible units, among which the linear output units perform best. We propose the dual reversed ordering approach to relieve the data sparsity and bias caused by single random ordering. Further, we show that it is easy to combine with other information to improve performance, which is promising for practical application. Finally, we show the NACF model can be easily trained compared to RBM-based models, and the itembased NACF yields better performance than corresponding RBM on two MovieLens datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collaborative Filtering with User-Item Co-Autoregressive Models

Deep neural networks have shown promise in collaborative filtering (CF). However, existing neural approaches are either user-based or item-based, which cannot leverage all the underlying information explicitly. We propose CF-UIcA, a neural co-autoregressive model for CF tasks, which exploits the structural correlation in the domains of both users and items. The co-autoregression allows extra de...

متن کامل

A Neural Autoregressive Approach to Collaborative Filtering

This paper proposes CF-NADE, a neural autoregressive architecture for collaborative filtering (CF) tasks, which is inspired by the Restricted Boltzmann Machine (RBM) based CF model and the Neural Autoregressive Distribution Estimator (NADE). We first describe the basic CF-NADE model for CF tasks. Then we propose to improve the model by sharing parameters between different ratings. A factored ve...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

CCCFNet: A Content-Boosted Collaborative Filtering Neural Network for Cross Domain Recommender Systems

To overcome data sparsity problem, we propose a cross domain recommendation system named CCCFNet which can combine collaborative filtering and content-based filtering in a unified framework. We first introduce a factorization framework to tie CF and content-based filtering together. Then we find that the MAP estimation of this framework can be embedded into a multi-view neural network. Through ...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017